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SUMMARY 

A Petrov-Galerkin finite element method is presented for calculation of the steady, axisymmetric 
thermosolutal convection and interface morphology in a model for vertical Bridgman crystal growth of non- 
dilute binary alloys. The Petrov-Galerkin method is based on the formulation for biquadratic elements 
developed by Heinrich and Zienkiewicz and is introduced into the calculation of the velocity, temperature and 
concentration fields. The algebraic system is solved simultaneously for the field variables and interface shape 
by Newton’s method. The results of the Petrov-Galerkin method are compared critically with those of 
Galerkin’s method using the same finite element grids. Significant improvements in accuracy are found with 
the Petrov-Galerkin method only when the mesh is refined and when the formulation of the residual 
equations is modified to account for the mixed boundary conditions that arise at the solidification interface. 
Calculations for alloys with stable and unstable solute gradients show the occurrence of classical flow 
transitions and morphological instabilities in the solidification system. 
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1.  INTRODUCTION 

The interest in describing convection in the melt near a solidifying solid has intensified in recent 
years with the increasing focus on detailed understanding of the role of transport processes in 
setting the quality of bulk metals and semiconductors grown from the melt.’+’ In many 
solidification processes buoyancy-driven or thermosolutal convection caused by non-uniformities 
in the temperature and concentration fields interact with heat and solute transport and the 
morphology of the melt/solid interface to affect adversely the compositional uniformity and the 
crystalline quality of the product solid. Detailed analysis for optimization of the design and control 
of crystal growth systems requires efficient and accurate numerical methods for the complex free- 
and moving-boundary problems that describe solidification including thermosolutal convection. 

In previous  report^^-^ we have described a Galerkin finite element analysis coupled with a 
Newton iteration procedure for simultaneous calculation of the field variables and interface shape 
for steady-state solidification problems. These analyses used standard isoparametric mixed finite 
element representations of the velocity, pressure, temperature and solute fields and a consistent 
polynomial approximation to the melt/solid interface. Galerkin’s method was employed to reduce 
the partial differential equations to a non-linear algebraic set and Newton’s method coupled with 
direct Gaussian elimination was used to solve this set. The efficiency of the Newton scheme over 
more conventional methods that iterate sequentially between the field variables and interface 
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shape was demonstrated by Chang and Brown.3 Besides yielding more rapid convergence to 
solutions of the discrete equation set, Newton's method is also the basis for computer-implemented 
perturbation methods for detecting multiple solutions, for tracking solutions in parameter space, 
and for determining solution stability with respect to small perturbations6 Chang and Brown4 
have used these features in conjunction with the finite element/Newton method for solving coupled 
convection-solidification problems for an idealized solidification problem. 

Calculations that described the convection and solute transport processes in a laboratory-scale 
directional solidification system5 uncovered a primary difficulty with the Galerkin approach. 
These calculations showed, and experiments have confirmed,' that intense laminar convection is 
present in these systems, so that a successful numerical simulation must resolve the resulting 
boundary layers in the velocity, temperature and solute fields. It is well known' that conventional 
Galerkin finite element approximations become numerically unstable for convection-dominated 
transport problems when the approximations do not adequately resolve the steep gradients in field 
variables. As a result, spurious oscillations with the spatial frequency of the mesh appear 
throughout the solution and destroy its usefulness. 

Although the resolution of the Galerkin approximation can be improved and the oscillations 
removed by mesh refinement, this cure is impractical in many applications. The extremely fine 
meshes that are needed to resolve the field variables adequately enough to stabilize the Galerkin 
approximation for complicated two- and three-dimensional flow problems are not practical using 
present supercomputers, especially in the context of the Newton algorithm, which requires 
solution of large sets of linear equations. The convection-solidification problems addressed in this 
paper fall into this category. Here the difficulties with resolution of boundary and internal layers in 
the various field variables are aggravated by the disparities in the diffusivities for heat, species 
and momentum; characteristic values for these parameters are given in section 2. 

The use of Petrov-Galerkin or 'upstream weighting' methods to alleviate the oscillations in 
under-refined Galerkin or centred-difference schemes is documented in the literature, as are the 

inherent to any of these methods that purposely introduce artificial diffusivity into the 
approximation. Adaptive grid refinement is another alternative, but is complicated by the need for 
varying approximations for field variables with widely different diffusivities, which are dominant in 
the thermosolutal convection. The Petrov-Galerkin technique discussed here can be thought of as 
an attempt at constructing an adaptive formulation, which enhances the computation of 
convectively dominated equations when used in conjunction with adaptive refinement on a single 
mesh designed to aid resolution of boundary layers in all variables. 

Finite element techniques for solving convectively dominated problems can be classified 
according to the formalism used to introduce artificial diffusivity into the Galerkin formulation. 
Methods based on modification of the numerical quadrature," on direct introduction of an 
artificial diffusivity' ' .12 and on modification of the weighting function in the weighted residual 
method (the Petrov-Galerkin method' 3-1 5, have all been proposed. From these methods we have 
chosen to use a particular Petrov-Galerkin formulation based on the adaptability of the method to 
two-dimensional problems on irregular grids, and the ease of the formulation of the method for 
higher-order, finite element basis functions. We have implemented the Petrov-Galerkin method 
proposed by Heinrich and Z ienk ie~ icz '~  for Lagrangian biquadratic basis functions in our 
development of the conservation equations arising in the solidification problem. These authors 
have proposed to weight the residual equations with a sum of the conventional basis functions and 
an additional function chosen to solve exactly the one-dimensional convection-diffusion problem 
with essential boundary conditions, and generalized the formulation to problems in two space 
dimensions approximated by the eight-node quadratic and biquadratic isoparametric elements. 
We apply this method for the two-dimensional, biquadratic isoparametric elements and include 
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the more complicated mixed boundary conditions that arise in solidification problems. Heinrich' 
has implemented this Petrov-Galerkin formulation for bilinear elements in a transient analysis of 
thermosolutal convection. In this calculation, Heinrich omitted the Petrov-Galerkin weighting 
from the source terms arising from the coupling of the temperature and solute fields to the 
buoyancy force in the momentum balance, contending that adding this dependence led to 
erroneous results. We apply the Petrov-Galerkin formulation to all terms in the conservation 
equations. 

In this paper we describe results from the combination of the Petrov-Galerkin method applied 
to each of the conservation equations for thermosolutal convection with the Newton iteration 
scheme presented previously for solution of steady-state solidification problems. This formulation 
is described in section 3. In section 4, the Petrov-Galerkin formulation is evaluated critically 
relative to the Galerkin method for the problem describing the solidification of a dilute binary 
alloy in the vertical Bridgman crystal growth geometry. This application is a fair test of the 
robustness of the algorithm, because it demands both flexibility of the formulation for 
approximating the mixed boundary conditions needed to describe transport across the solidific- 
ation interface and accuracy of the approximation for capturing boundary and internal layers in 
the field variables. 

The vertical Bridgman system is also a fertile ground for demonstrating the occurrence of well- 
known fluid mechanical instabilities caused by coupling of the temperature and solute fields and 
small scale morphological instabilities in the non-dilute system. Besides natural convection caused 
by the temperature gradients inherent in this system, gradients in the solute field during the 
solidification of a non-dilute alloy can also drive flow. Adding a heavier solute which is partitioned 
into the melt at the melt/solid interface should decrease the flow driven by radial temperature 
gradients by increasing the density of the melt in the diffusion-layer above the interface. 

We also expect that a version of the sideways diffusive instability described by Hart l 7  is possible. 
Hart showed that the parallel flow established between two vertical plates at different temperatures 
will become unstable in the presence of a constant axially stabilizing concentration gradient of 
sufficient magnitude. He showed that increasing the solute concentration (solutal Rayleigh 
number, Ra,) at constant temperature difference (thermal Rayleigh number) caused a transition to 
a pattern of vertically layered flow cells. This transition appears as a steady-state bifurcation from 
the parallel-flow solution. The transient calculations of Heinrich" seem to indicate that stable 
cellular patterns are possible for Ra, greater than the critical value. We expect that flow patterns 
like those described by Hart are possible in the solidification system, but that the non-uniformity of 
the thermal boundary conditions and the exponential variation of the solute concentration along 
the axis of the crystal will act as imperfections and break the bifurcation present in the idealized 
situation studied by Hart. We show this transition in section 5.1. 

McFadden et ~ 1 . ' ~  have studied solutally driven flows when the temperature field is vertically 
aligned and stabilizing and the solute profile corresponding to diffusion-controlled solidification 
lowers the melt density adjacent to the solidification interface. They have shown that thermo- 
solutal convection begins at a critical solutal Rayleigh number and develops first as a cellular flow 
restricted to the region of melt containing the destabilizing solute gradient. As discussed by Chang 
and Brown,4 laboratory furnaces have lateral temperature gradients that cause buoyancy-driven 
convection to exist for all non-zero temperature differences. These flows break the symmetry of the 
solute field in the case of a non-dilute alloy and lead to imperfect bifurcation from the diffusion- 
controlled state. This is demonstrated in section 5.2. 

Adding the coupling of the melt/solid interface shape to the solute field through the dependence 
of the melting point on the local composition of the alloy makes it possible that local compositional 
supercooling of the melt will cause the transition from a locally planar to a cellular interface 
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morphology (spatial wavelength of the order of 100 pm). This transition has been rigorously 
examined without convection'9~20 and is another example of a bifurcation phenomenon that is 
ruptured by variations in the solute concentration along the interface, as demonstrated by Ungar 
and Brown.2' We show in section 5.3 that solute variations caused by imperfect convective mixing 
can lead to cells that appear as mesh-dependent numerical instabilities in the convection- 
solidification problem. This coupling accentuates the difficulties with numerical simulation of 
complex non-linear phenomena that can manifest changes on drastically different length scales. 

2. VERTICAL BRIDGMAN CRYSTAL GROWTH SYSTEM AND 
THERMOSOLUTAL CONVECTION 

The idealized vertical Bridgman crystal growth considered here is shown in Figure 1. It consists of 
a cylindrical ampoule containing melt and solid that is translated through a furnace composed of 
hot and cold zones separated by an insulating region designed to cause planar isotherms near the 
melt/solid interface. Here we consider only the vertically stabilized Bridgman system where melt is 
placed above the solid and the radially averaged vertical temperature field is stabilizing with 
respect to buoyancy-driven convection. Then convection in a single-component melt is driven 
solely by radial temperature gradients caused by imperfections in the thermal boundary 
conditions. The unstable configuration with solid above a single-component melt was discussed by 
Chang and Brown.4 

The motion of the ampoule and the growth of the crystal are modelled by uniform axial velocities 
through the top and bottom of the ampoule. This model corresponds to assuming that the ampoule 
extends far enough into both isothermal regions of the furnace that transients caused by the ends of 
the ampoule can be neglected. The growth rates in the melt V, and solid V, are related by the ratio 
of densities, (T = (p,/p,), as V, = oV,. The concentration of the dilute component of the alloy 
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Figure 1 .  Schematic diagram of the stabilized vertical Bridgman crystal growth system 
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entering the ampoule is set to co, which is measured in mole per cent of the solute. 
It is instructive to review the basic transport in diffusion controlled crystal growth in order to 

understand the driving forces for thermosolutal convection in the vertical Bridgman system. In the 
absence of thermosolutal convection and for a flat melt/solid interface, the profiles of temperature, 
solute concentration and fluid density have the shapes shown in Figure 2. The vertical temperature 
field will be linear (assuming that conduction dominates heat transport caused by the growth 
velocity V,) with a discontinuity in slope at the interface caused by latent heat release and the 
change in thermal conductivities between the phases. For a single-component melt, the axial 
variation of the temperature field causes a decreasing density profile up from the interface, as long 
as there are no anomalies in the behaviour of the coefficient of thermal expansion with temperature 
and concentration. 

Solute, which enters at the top of the ampoule, convects, downward at the growth velocity and is 
preferentially rejected ( k  < 1) or incorporated ( k  > 1) into the solid according to the thermodynamic 
segregation coefficient between solid and melt, k = c,/c,, where the concentrations are evaluated at 
the interface. The resulting solute field has the well-known22 exponential form shown in Figure 2. 
In a binary alloy, the axial variation of the melt density depends on the value of k and on the 
direction of the influence of increasing concentration on the density p = p(c) ,  so that the solute 
profile can have either a stabilizing or destabilizing effect on convection. 

We consider the steady-state axisymmetric conservation equations for energy in the solid and 
melt, and for momentum, solute concentration, and continuity in the melt. Field variables are 
written in terms of a fixed cylindrical polar (r, 8, z )  co-ordinate system with its origin at  the top of 
the ampoule, and the height L of the ampoule is introduced as a length scale. The shape of the 
melt/solid interface is described by a single-valued function z = h(r), 0 Q r Q A, where A = R/L  is 
the aspect ratio of the ampoule. The unit vectors normal n and tangent t of this surface are 

n = (e, - h,e,)/( 1 + h,?)'I2, t E (e, + h,e,)/( 1 + h:)' " , (1) 

where h, = dh/dr. We define the dimensionless temperature and concentration fields as 
@(r, z )  E [ T(r, z )  - Tc] / (  Th - T,) and c E E(Y,  z)/c,, respectively, where T(r, z )  and E(r, z )  are the 
dimensional fields and Th and T, are the temperatures of the hot and cold zones of the furnace. 

The dimensionless conservation equations are written in terms of the reduced concentration 
field, S(r ,  z )  = c(r ,  z )  - 1, as 

V*V@ = v20,  (2) 

P 

Figure 2. Axial dependence of the temperature, solute concentration and density profiles for a convectionless vertical 
Bridgman crystal growth system 
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(Sc/Pr)v.VS = V'S, (3) 
v -Vv  = - Vp + PrV'v + Pr[Ra,S - Ra,(O - l)], (4) 

v*v = 0 ,  ( 5 )  

where V is the gradient operator in cylindrical co-ordinates. The dimensionless velocity v(r, z) and 
pressure p(r,z) fields are scaled with a,/L and pmatfi/L2, respectively, where a,  is the thermal 
diffusivity of the melt. 

The dimensionless groups appearing in equations (2)-(5) are defined in Table I along with the 
values of the parameters used in the calculations presented below. The solute diffusivity is D. The 
definitions of the two Rayleigh numbers follow from expressing the variation of the melt density p 
with temperature and concentration as 

p = P O  [ - - Th) + B C ( ~  - c O ) l  7 (6)  
where po is the reference value evaluated at T= Th and c = co, and the expansion coefficients are 
defined as Pt = - (l/p)(dp/aT),,, and 8, = ( l / p ) ( d p / d ~ ) ~ , ~ .  Positive values of Rat correspond to the 
vertical Bridgman system with melt above solid. Positive values of Ra, correspond to a solute that 
increases the density of the alloy. Whether or not this solute stabilizes the melt depends on how it 
partitions between melt and solid, as determined by the magnitude of the segregation coefficient k .  
The density profiles corresponding to k < 1 are shown in Figure 2 for the cases of p, < 0 and 

The calculations presented in sections 4 and 5 are based on alloys formed by adding solutes to 
germanium, a well-characterized semiconductor material. For example, silicon partitions 
preferentially into the solid ( k  = 4.2) and is the lighter component in a silicon-germanium alloy. 
Considering the convectionless solute profile shown in Figure 2 leads to the conclusion that silicon 

Table I. Dimensionless groups and their values for calculations representing binary alloys of germanium 

B c  ' 0. 

Group Definition Value 

Thermal Rayleigh number 

Solutal Rayleigh number 

Prandtl number 

Schmidt number 

Dimensionless growth rate 

Conductivity ratio 

Stefan number 

Thermal diffusivity ratio 

Density ratio 

Ampoule aspect ratio 

Dimensionless length of 
adiabatic zone 

Segregation coefficient 

Dimensionless slope of 
the liquidus line 

k 

m = f i co / (  Th - T,) 

0-5 x lo6 

0-  f 106 

0.007 

6.2 

0016 

1 .o 
4.0 

1 .o 
1 .o 
025  

0.25 

germanium: 0.1 
silicon : 4.2 

silicon : 0.161 
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should increase the melt density adjacent to the interface; hence it should damp convection in the 
melt. We also consider a germanium alloy formed with a solute identical to silicon, except that the 
sign of b, is reversed so that it destabilizes the melt adjacent to the interface. 

The Prandtl and Schmidt numbers are important for the discussion of the numerical results. For 
a typical metal or semiconductor alloy, the ratio Sc/Pr is extremely high, denoting the large 
difference between the thermal and species diffusivities in the melt. 

The energy equation in the crystal is 

P e e ; V O  = y V 2 0 ,  (7) 
where y is the ratio of thermal diffusivities between the solid and melt and Pe is the dimensionless 
growth rate; see Table I for definitions. 

The location of the melt/solid interface is set by requiring the temperature in each phase to be the 
alloy melting temperature O,(S), as determined from the liquidus curve of the binary phase 
diagram for the material: 

(8) O m ( r r  h(r ) )  = O s ( r ,  h(r ) )  = O,(S). 

( n - V O ) ,  - K ( n . V O ) ,  = S t P e ( n - e , ) ,  

( n - V S ) ,  = (PeSc/Pr) (n-e , ) (  1 - k ) ( S  + l ) ,  

Balances on heat and species flux at the interface are written as 

(9) 

(10) 

where K is the ratio of thermal conductivities between crystal and melt and St  is the Stefan number; 
see Table I. The condition on the concentration field at the inlet which is consistent with the quasi- 
steady-state model used here is 

as/& = (PeSc/Pr)S , (1 1) 
and is simply a solute balance for melt with incoming concentration S = 0. 

along the melt/solid interface, 
The boundary conditions on the velocity field along the walls of the ampoule specify no-slip and, 

v - t  = P e ( e Z - t ) ,  v - n  = Pe(e;n) ,  (12) 
where the first condition is no-slip and the second sets the incorporation of melt into the solid. The 
centreline of the ampoule is taken to be a line of axial symmetry. 

The thermal boundary conditions used in the calculations are shown in Figure 1 and assume 
that the ampoule has negligible thermal mass and is in perfect thermal contact with the furnace. 
These assumptions limit the applicability of the results, but are easily removed for accurate 
modelling of real crystal growth systems.23 

3. NUMERICAL METHODS 

The convection-solidification problem described by equations (2)-( 12) is similar to the single- 
component solidification problem discussed by Chang and Brown,4 and the basic formulation of 
the finite element/Newton method follows the approach used there. This technique is reviewed 
briefly below to highlight the differences needed to incorporate the Petrov-Galerkin formulation, 
which is discussed in section 3.2. 

3.1. Finite element/Newton algorithm 

The convection-solidification problem is reduced to a finite-dimensional set of residual 
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equations by representing the field variables and the interface shape in expansions of Lagrangian 
basis functions. For an approximate shape of the interface, the melt and solid are discretized into 
quadrilateral elements, and the field variables are approximated by the mixed finite element set of 
functions suggested by Huyakorn et Lagrangian biquadratic polynomials { @(r, z)}, defined 
on each element, are used to approximate the components of velocity (ur, uz), the temperature 0 and 
solute concentration S fields; and Lagrangian bilinear polynomials { Yi(r, z)} are used to 
approximate the pressure p(r, z). The interface shape h(r) is represented by the set of one- 
dimensional Lagrangian quadratic polynomials { @(r)} that is consistent with the isoparametric 
mapping for a given mesh of elements along the interface. The Petrov-Galerkin formulation of the 
residual equations is formed by weighting the jth differential equation with the function Wj(r, z) 
and integrating over the appropriate domain. In the Galerkin formulation used by Chang and 
Brown4 the weighting functions were chosen to be the basis functions from the respective 
expansions for the field and interface variables. Here we use the Petrov-Galerkin form 

Wi(r, z) = @(r, z )  + Ni(r, z;  v), (13) 
where the functions { Nj(r, z; u ) }  contain the information about the direction and magnitude of the 
local velocity field. The form of these extra functions suggested by Heinrich and Z ienk ie~ icz '~  is 
discussed below. Because the functions { Nj(r, z; u ) }  have the same amount of differentiability as the 
Lagrangian basis functions { Qi(r, z)}, the development of the algebraic residual equations follows 
exactly the same approach as that described by Chang and Brown.4 

The final form of the algebraic equation set is reached by applying the divergence theorem to 
eliminate second derivatives and by incorporating the boundary conditions on temperature and 
velocity along the ampoule wall, applying the interfacial energy balance (9), and by forcing the 
temperature field to be continuous along the interface. The melting point condition, equation (8), is 
used as the residual equation for the interface shape; residual equations for this one-dimensional 
equation are formed by weighting it with one-dimensional quadratic basis functions and 
integrating over the interface. The resulting residual equations are 

'I"(V-v)r dr dz = 0, i = 1,. . . , M  , 

[W'[v.Vv + Vp + Pr(Ru,(@ - 1) - Ra,S)] 

i = 1,. . . , N,, 

jDm 

J D m  

+ Pr[VW'.Vv]] r dr dz = 0, 

[W'v-VO + VW'-VO] rdrdz 
jDm 

W'StPe(e;n) ds = 0, i = 1,. . . , N,, 
- L, 
- la., 

[W'(Sc/Pr)v-VS + V W'-VS] r dr dz 
6 m  

W'(PeSc/Pr)(e;n)(l - k ) ( S  + 1)ds 

W'(PeSc/Pr)S r dr = 0, i = 1,. . . , N,, 
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[W'Pe(e;V@) + VW'*V@] rdrdz  = 0, i = 1 ,... , N , ,  (144 

6'(@-@,,,)ds=O, i =  1 ,..., Nh, ( 1  4f) s ?D, 

where the notation for the portions of the domain and boundary is shown in Figure 1. The limits on 
the indices for the residual equations denote the numbers of basis functions in the expansions for 
the pressure ( M ) ,  for the components of the biquadratic basis functions for the velocity, 
temperature and concentration fields in the melt (N,,,), for the temperature field in the solid ( N s ;  
excluding the Nh functions defined along the interface), and the number of functions in the one- 
dimensional expansion for the interface shape (Nh). 

The formulation of the weighted residual equations described above assumes that the weighting 
function W' is continuous, so that the derivatives are defined. Then the diffusive terms in the 
equation are modified, as well as the terms representing convection and sources. The weighting 
functions developed in the streamline/upwinding method of Brooks and HughesI5 do not have this 
much continuity, and their application is based on a formulation of the weighted residual 
equations which does not seem to generalize to quadratic finite element approximations. Another 
form of the Petrov-Galerkin method for biquadratic approximations to the scalar convection- 
diffusion equation has recently been proposed by Donea et 

The non-linear set of algebraic residual equations (14) is represented as 

w; P) = 0 9 (15) 
where x is the vector of all the unknown coefficients in the expansions for the field variables and the 
interface shape and pis the vector of all parameters entering the equation set. Newton's method is 
used to solve this set in a similar way to that outlined by Chang and Brown.4 

The two finite element meshes used in the calculations are shown in Figure 3. The coarser mesh 
(M 1)  has 8 elements spaced equally across the radius of the ampoule, 16 axial elements in the melt 
and 8 in the solid. The axial location of each element is connected to the location of the melt/solid 
interface. The axial spacing of the elements in the melt is graded toward the interface to help 
approximate the rapid variation in concentration expected there. The finer mesh (M2) has double 
the number of elements in each direction, as well as radial grading of the elements towards the 
centreline and the ampoule wall where boundary layers in the solute and velocity fields are 
expected. The total numbers of non-linear equations generated for each mesh were 2686 ( M l )  and 
10,230 (M2). Execution times for a single Newton iteration on a Cray-IS computer were 1 1  (M 1 )  
and 66 (M2) CPU seconds. 

3.2. Petrov-Galerkin formulation for solidijkation problems 

on constructing approximations to the one-dimensional convection-diffusion problem 
The Petrov-Galerkin weighting functions introduced by Heinrich and Z ienk ie~ icz '~  are based 

V(dU/dx) - K(d2U/dx2) = 0, 0 Q x Q 1 ,  ( 1 6 4  

U(O)= U ( l ) = O ,  (16b) 

which are nodally exact for a solution U ( x )  represented in Lagrangian quadratic basis functions on 
a regularly spaced mesh with element size A. Then the influence of convection on the numerical 
approximation is measured in terms of the 'element Peclet Number' P = VA/K. The extra part 
of the weighting function in equation (12) is defined for the one dimensional problem as 
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M I  M 2  

Figure 3. Finite element meshes: (a) M1 and (b) M2 

" ( 5 )  = - Ei(P)r(<), i = 1,2, (17) 
where 5 is the transformed co-ordinate, - 1 < < < 1, and the index i differentiates between vertex 
(i = 1) and centroid (i = 2) nodes in the Lagrangian quadratic formulation. The modifying 
function r(5) in equation (17) is the cubic polynomial, r(5) = (5 /8)<((  - 1)(< + l), which 
vanishes along the boundaries (5  = f 1) of the element. Nodally exact values for the solution 
of equations (1 6) are obtained by selecting the parameters { ci(P^)} to be 

dl)(P)= 2tanh(P/2)[1 +(3/P)coth(p/4)] - ( 8 / P ) -  coth(p/4), 

~ ' ~ ' ( 8 )  = (16/P) - 4 coth (P/4). 
(18a) 

(18b) 
The Petrov-Galerkin weighting functions for the biquadratic basis functions used in our 

approximations to velocity, temperature and concentration are formed as tensor products of the 
one-dimensional functions described by equations (1 7) and (1 8). In a general flow problem the 
velocity field is neither unidirectional nor constant within an element, so that the local Peclet 
number P and the weighting coefficients must be computed for each element. A total of twelve 
upwinding parameters (#), j = 1,2, k = 1,. . . ,6) are computed for each two-dimensional element, 
as shown in Figure 4. The elemental Peclet number is computed for each three-node group as 
based on the average velocities at the relevant boundary nodes. For example, the value of the 
elemental Peclet number P for the computation of the parameters EL') and ~ ( 2 ~ )  for nodes 4,5 and 6 
(see Figure 4) is approximated as 

where Ar and Az are the linear distances between the nodes 2 and 8, and K is the appropriate 
diffusivity. Using the linear distances in equation (19) essentially neglects the curvilinear sides of 
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Figure 4. Numbering sequences for application of Petrov-Galerkin weightings to biquadratic isoparametric elements 

the general isoparametric elements, but is a good approximation as long as the melt/solid interface 
is not very deformed. The diffusivities for the dimensionless conservation equations (2)-(4) are 
unity for the energy equation, Pr/Sc  for the solute concentration equation and P r  for the 
momentum equation. 

The Petrov-Galerkin formulation can be incorporated directly into the Newton iteration 
because the parameters { E L ’ ) }  depend explicitly on the finite element approximations for the 
velocity components at the element nodes and on the location of the nodes (and hence the shape of 
the melt/solid interface) through the definition of the local Peclet number P .  The needed 
contributions for the residual equations and Jacobian matrix are computed in closed form. 
Asymptotic expansions of equations (17) and (18) are used for high (IPI > 25) and low ([PI < 0.1) 
values of the Peclet number in order to simplify the calculation. 

The Petrov-Galerkin method described above is referred to as P1 and was implemented and 
tested for calculations with varying growth rates ( P e )  and amounts of buoyancy-driven convection 
(Ra,);  all other parameters were set at the values given in Table I.  Although the method gave 
oscillation-free solute fields (the component of the solution with the smallest diffusivity), the 
concentration was less accurate than the Galerkin finite element results using the same meshes (M 1 
and M2). These calculations are described in section 4. 

Two test calculations were used to identify the problem with the Petrov-Galerkin formulation 
P1 as the method of treatment of the mixed boundary conditions for the solute concentration along 
the inlet and interface. First, calculations with Rat = 0 and increasing P e  showed the better 
performance of the conventional Galerkin calculation. In this case, the mixed boundary conditions 
were the only difference in the computation of the solute field from the problem, equations (1 7) and 
(1 8), for which the Petrov-Galerkin method is exact at the nodes. Secondly, calculations with the 
same set of residual equations including natural convection, equation (15), but with the essential 
boundary condition 

(20) 
replacing the solute balance, equation (lo), showed the superior results for the Petrov-Galerkin 
method over the Galerkin formulation. The essential boundary condition (20) corresponded to the 
condition used to derive the weighting functions { IVY)} .  The results of these calcuiations also are 
given in section 4. 

Two different remedies were considered to extend the Petrov-Galerkin formulation to the 
boundary conditions for solidification. New weighting parameters { E ? ) }  were derived that gave 

S(r ,  h ( r ) )  = (l/k) - 1, 0 < Y < A, 
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nodally exact solutions for the one-dimensional solidification problem, but these performed poorly 
when the flow was cellular and so was not uniaxially aligned with the melt/solid interface. A more 
fruitful approach resulted from considering the effect of the Petrov-Galerkin method on the 
interfacial source term in the weak form of the solute balance, equation (14d). Because the 
modifying function r(r) used to form the Petrov-Galerkin weighting function vanished along all 
element boundaries, this source term was not changed as the elemental Peclet number increased. 
We think this caused an imbalance in solute conservation. 

We removed the source term from the boundary condition by defining a new concentration 
variable as the difference between S and the one-dimensional concentration field: 

In terms of the new concentration variable, ŝ  = S - S,, the solute balance equation (3) and 
boundary conditions at the interface (10) and inlet (1 1) become 

(22) 

(n-V$ = (PeSc/Pr)(e;n)(l - k)$, z = h(r),  0 < r < 1, (23) 

d$/dz = (PeSc/Pr)$,  z = 0, 0 < r < 1. (24) 

(Sc/Pr)v.V$ + S,) = V 2 ( 9  + S,),  

The weighted residual equation (14d) is replaced by the following equation in the new formulation: 

[W'(Sc/Pr)v.V($ + S,) + V W'*V($ + S , ) ]  r dr dz jDm 
- J J D ,  

W'(PeSc/Pr)(e;n)(l - k)$ds 

r 

+ J W'(PeSc/Pr)$(r,O)rdr = 0, i = 1,. . ., N,.  
JDO 

New Source terms appear in the area integrals instead of in the boundary integrals; all source terms 
are influenced by the additional weighting functions. We refer to this formulation as P2. As shown 
below, this method gives more accurate results for convection-dominated solidification problems 
than either the P1 Petrov-Galerkin or the Galerkin method. 

4. DILUTE BINARY ALLOY: COMPARISON BETWEEEN 
PETROV-GALERKIN AND GALERKIN METHODS 

Calculations were performed with the Galerkin and Petrov-Galerkin formulations for the 
thermophysical parameters and system configuration listed in Table I. The comparison between 
the three methods was carried out for calculations describing the solidification of an alloy of dilute 
gallium in germanium, where the coupling of solute concentration to the density of the alloy was 
ignored, i.e. Ra, = 0. Then the solute balance equation is decoupled from the momentum and 
energy equations and reduces to the solution of a scalar convection-diffusion equation with the 
boundary conditions appropriate for solidification. 

Even for mesh M1, the temperature and velocity fields computed with both methods agreed 
quantitatively for thermal Rayleigh numbers in the range 0 < Rat < 5 x lo6, and reproduced 
-esults discussed by Chang and Brown'. Temperature fields computed for this range of Ra, are 
;hown in Figure 5. In the melt, the temperature decreases from the wall to the centreline for a given 
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Figure 5. Sample temperature fields for dilute GaGe growth; 0 < Ra, < 5 x 10'. Isotherms are spaced equally at an 
increment of A@ = 005 
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axial position; the resulting radial temperature gradients are greatest at the junction of the hot and 
adiabatic zones. The temperature profile is practically symmetric about the melt/solid interface, 
indicating the negligible effect of latent heat release caused by the crystal growth rate Pe. 

The temperature is nearly unchanged for 0 < Ra, < lo4 because of the low Prandtl number of the 
melt. Increasing Ra, above lo4 causes the isotherms to compress downward along the axis of the 
melt and stretch upward at the wall of the ampoule. The interface is deflected little by convection. 
At Ra, = 5 x lo6 the deflection from centreline to ampoule wall is only 6 per cent. 

The streamlines shown in Figure 6 correspond to the temperature fields in Figure 5. Three 

I / I  

l o ,  :I.IO' 

n 

F 
Figure 6. Streamlines for dilute GaGe growth corresponding to the isotherms shown in Figure 5; 0 < Ra, < 5 x lo6 
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regimes of the flow are evident in this range of Rayleigh numbers. For Ra, < lo3, the streamlines are 
essentially those caused by the uniaxial convection due to solidification. A cellular flow developed 
for lo3 < Ra, < lo6 which moved melt up along the side wall and down along the centreline of the 
melt. The shape of this cell only changes when the temperature field begins to be influenced by 
convection. Increasing Ra, above lo6 (see Figures 6(e) and 6(f)) caused the formation of a weak 
secondary cell adjacent to the interface which moved fluid in the opposite sense from the primary 
cell. 

As expected by the large value for the ratio Sc/Pr,  the solute field is changed dramatically by far 
weaker levels of cellular convection, and the accuracy of the solute field is sensitively affected by 
both the weighted residual method (either Galerkin (G) or Petrov-Galerkin (P1 or P2)) and the 
mesh. Solute fields computed using Galerkin’s method and mesh M1 are shown in Figure 7. For 
Ra, as low as lo3, the solute field is distorted from the one-dimensional exponential profile valid for 
Ra,=O. We measure the distortion along the interface in terms of the percentage radial 
segregation, defined as 

Ac = max c(r, h(r))  - min c(r, h(r))  k x 100 per cent. (26) [ O Q r S A  O S r S A  1 
The radial segregation Ac decreases from its near maximum value (63 per cent) at Ra, = lo3 to 47 
per cent at Ra, = lo4. This decrease is an indication that the solute field is beginning to form a well- 
mixed core with steep concentration gradients along each boundary of the melt. Galerkin’s method 
cannot capture these layers with mesh M1 and fails abruptly for Ra, > lo4. The concentration 
fields computed far larger values of Ra, have spatial oscillations. 

Solute fields computed with the first Petrov-Galerkin method (PI)  and mesh M1 are shown 
in Figure 8. The fields are oscillation-free for Ra, as large as 10’. Unfortunately, the accuracy of 
these fields is much poorer than those computed with Galerkin’s method. The first hint of the 
inaccuracy is the extremely low values of the concentration adjacent to the interface where the 
expected value is approximately l/k = 10. 

The global accuracy of approximate solute fields is estimated by computing the average 
interfacial concentration, defined as jl ( S  + 1 ) (  1 + h,2)’I2r dr 

(c) = (27) 
j:(l + h,2)‘I2rdr ’ 

Ro = O  

----I - 
‘I 0 

Ro = I x lo2 

9‘ 10’ 

R O  = I x lo4 

7 9 9  

Figure 7. Solute fields computed for dilute GaGe growth using Galerkin’s method and mesh M1; 0 < Ra, < lo4 
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Figure 8. Solute fields computed for dilute GaGe growth using the Petrov-Galerkin method P1 and mesh M1; 
103 G RU,  G 106 

which should be exactly (c) = l/k for the steady-state model. Values of (c) computed with the 
Galerkin and Petrov-Galerkin formulations are listed in Table TI. The poor global conservation of 
solute in the P1 formulation is obvious. 

The calculations with the essential boundary condition (20) replacing the solute balance (10) at 
the interface are shown in Figures 9(a) and 9(b) for the Galerkin (G) and the first Petrov-Galerkin 
(Pl)  formulations, respectively. The improvement associated with the Petrov-Galerkin method is 
clear from the smoothness of the solutions and the values of the concentration near the interface. 

Solute fields computed with the second Petrov-Galerkin formulation (P2) are shown in 
Figure 10 for mesh M1. The fields are smooth and accurate for the same range of Ra, as Galerkin’s 
method, as indicated by the values of (c) listed in Table 11. Increasing Ra, above lo4 in the P2 
formulation results in smooth, but inaccurate solutions. At this point no benefit is obvious from the 
Petrov-Galerkin method. 

Increasing the finite element discretization to mesh M2 showed a clear improvement of the P2 
formulation over the Galerkin method, as indicated by the solute fields in Figures 1 1  (G) and 12 
(P2) and the interfacial concentration values given in Table 11. Small oscillations developed in the 
Galerkin calculations for Ra, = 10’ and became more apparent for Ra, = 5 x lo5.  The global 
accuracy of the calculation was destroyed by this convection level. 

The results for the P2 formulation with mesh M2 were smooth for Rayleigh numbers up to 
2 x lo6; see Figure 12. Fairly accurate solutions were computed with the Petrov-Galerkin method 
up to this value of Ra,, a significant improvement over the value Ra, = lo5, beyond which the solute 
field predicted by Galerkin’s method began to oscillate and to yield poor solute balances. It is 
interesting that the error in (c) for the P2 method passes through a maximum with increasing Ra,. 
The maximum error in (c) seems to correspond to the appearance of the secondary flow cell and 
the associated maximum in the deflection of the interface shape. The appearance of the secondary 
cell lowers the magnitude of the velocity adjacent to the boundary, thereby decreasing the 
steepness of the solute boundary-layer there. Calculations at Ra, > 2 x lo6 were less difficult than 
those where a stronger single flow cell was adjacent to the interface. 

Most importantly, the Petrov-Galerkin formulation, when coupled with fine finite element 
discretizations, allowed calculation of the solute field and the related segregation in the solid 
through the flow transition from a single-cell to the two-cell flow for Ra, > 2 x lo6. This transition 
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Table 11. Interfacial mass balances predicted using Petrov- 
Galerkin (P l ,  P2) and Galerkin (G)  formulations for O <  RN, 

< 2 x lo6. The exact mass balance is 10.00 

Mesh M1 Mesh M2 Rat 
G P1 P2 G P2 

0 10.00 10.00 10.00 10.00 10.00 
103 10.11 10.95 10.14 10.00 10.00 
104 10.21 30.87 10.26 9.91 9.92 
105 - 1.15 4.26 9.65 9.79 
5 105 13.21 7.9 1 

- - 746 106 
- - 9.26 2 x 106 

- - - 

- - 

- - 

R,, = I x 103 

m 

R,, = I x lo3 

1.9 

e ~MELTICRYSTAL 
INTER FAC E 

I 104 I x ~ 0 5  

e 

I lo4 

2.8 

4.6 

e 

2 

4.2 

e 

e 

I lo5 I x 106 

2.8 

4.8 

e 

Figure 9. Solute fields computed for dilute GaGe system with the essential boundary condition (20) by both the Galerkin 
(a) and Petrov-Galerkin (b) (Pl) methods: lo3 < Ra, < 10' 
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R,, = I x 1 ~ 3  I l o 4  I x105 I x 106 
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Figure 10. Solute fields computed for dilute GaGe growth with the Petrov-Galerkin method P2 and mesh M1; 
103 G R ~ ,  G 106 

4.94 

e 10.74 

Figure 11. Solute fields computed for dilute GaGe growth using Galerkin method and mesh M2; lo3 < Rn, < 5 x lo5 

is summarized in Figure 13 where the interfacial solute concentrations are plotted across the radius 
of the solid as a function of Ra,. The importance of the appearance of the second cell corresponds to 
an inversion in the location of the maximum concentration along the interface. 

5. NON-DILUTE ALLOYS 

The Petrov-Galerkin formulation P2 and the finite element mesh M2 were used to study the 
interactions of convection and interface morphology with the temperature and solute fields for 
non-dilute alloys. The calculations reported in this section are for an alloy with thermophysical 
properties similar to the silicon-germanium (SiGe) system, but with the sign of 8, varied to 
represent both a solutally stabilizing (section 5.1) and a destabilizing (section 5.2) solute. The slope 
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:igure 12. Solute fields computed for dilute GaGe growth with the Petrov-Galerkin method P2 and mesh M2; 
104 G Ra, G 2 x 106 
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Figure 13. Concentration along the melt/crystal interface as a function of Ra, for growth ofdilute GaGe alloy. Calculations 
were performed with formulation P2 and mesh M2 

of the liquidus curve rn is set to zero for the calculations reported in sections 5.1 and 5.2; its effect on 
the shape of the melt solid interface is examined in section 5.3. 

The flow, temperature and concentration fields were computed for a dilute alloy with the 
segregation coefficient k = 4.2 appropriate for the SiGe system as a reference case for the non-dilute 
calculations. Because the other thermophysical properties were identical with those used for the 
calculations in section 4, only the solute fields showed any difference from the results displayed in 
Figures 5 and 6. The solute fields computed with Ra, = 0 are given in Figure 14 for 0 < Ra, Q 5 
x lo6. The interfacial concentration profiles are shown in Figure 15 and display trends for the 

location of the maximum and minimum amounts of solute that are opposite to those when the 
segregation coefficient is less than one. The inversion of the interfacial concentration after the 
appearance of the secondary flow adjacent to the interface also occurs. 

5.1.  Stabilizing alloy: Ra, < 0 

Introducing a solute that increases the density of the melt adjacent to the interface in large 
enough concentrations should damp convection. The contours of the stream function, solute 
concentration and density are shown in Figure 16 for Ra, = - lo3 and 0 Q Ra, < 5 x lo4; the 
temperature fields for these calculations are practically identical to those shown in Figure 5. The 
dimensionless melt density (plp, )  has been computed as 

(28) 
The solute field is successful at suppressing convection only for thermal Rayleigh numbers below 
lo3. The structure of the convection is changed from the cellular flow predicted for the dilute system 
to almost rectilinear streamlines in the presence of the non-dilute solute. The corresponding radial 
segregation is Ac  = 8.9 per cent in comparison to the value Ac = 58.3 per cent for Ra, = 0. 

For higher levels of thermal convection the flow fields are very similar to those for the dilute 
system shown in Figure 6. At Ra, = 5 x lo4, the circulation rate of the flow cell Y,,, is decreased by 

(pip,) = [ l  -Rat(@ - 1) + Ra,(S - l)](Vcr,/gL3). 
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Figure 15. Solute concentration fields along the melt/solid interface for the dilute SiGe alloy as a function of Ra, 

only 0-5 per cent by adding the solute. The large radial variations in the density field near the 
junction of the adiabatic and hot zones are due entirely to the temperature profile. 

Increasing the solutal Rayleigh number to Ra, = - 5 x lo5 results in almost rectilinear flow and 
low levels of solute segregation for thermal Rayleigh numbers up to 10’; see Figure 17. The density 
in the melt is approximately constant across the radius of the ampoule at each axial location. 
Calculations at higher values of Ra, are marked by the appearance of weak flow cells adjacent to 
the junction of the adiabatic and hot zones; see Figure 17(c). These flows are driven by the steep 
density gradients in this region caused by the mismatch in the thermal boundary conditions 
and lead to significant local distortion of the solute field, as shown in Figures 17(b) and 17(c). 
Because the flows are isolated away from the interface, the concentration profile along it is not 
disturbed and the amount of radial segregation is less than 5 per cent. 

It is interesting that these flows have multiple cells stacked axially above the junction, instead of 
the single cell seen in the calculations for the dilute alloy, Ra, = 0. The development of the cells in the 
non-dilute alloy seem to form by the mechanism proposed by HartI7 for the sideways diffusive 
instability. Here the flow driven by the slight radial temperature gradient and stabilized by the 
concentration gradient becomes unstable to the development of axial cells. In the idealized system 
studied by Hart both theradial temperature gradient and the axial solutal gradient were constant, 
and the cells developed as a bifurcation from a rectilinear base state. In the vertical Bridgman 
system, the non-uniform temperature field and exponentially varying axial solute profile are both 
imperfections to this bifurcation and cause the cells to develop continuously from the basic flow. 

Calculations could not be continued for values of Ra, greater than 4-65 x lo5 for Ra,= 
- 5 x lo5. The divergence of the Newton iteration for larger values of Ra, indicated that a 
limit point appeared in the family of steady-state solutions. We did not implement continuation 
methods6 to compute the other solutions expected for lower values of Ra, because mesh 
refinement would be needed to guarantee that the limit point is not an artefact of poor 



PETROV-GALERKIN METHODS FOR NATURAL CONVECTION 

7.09 m 1 0 .  

0 5370 

‘1 JO86 

€ 

\ 
5.10 

16.07 

k 
L {rn E 

Figure 16. (Contd.) 



784 P. M. A D O R N A T O  A N D  R. A. BROWN 
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Figure 16. Sample contours of the stream function, solute concentration and melt density for lo3 < Ra, < 5 x lo4; 
Ra, = - lo3 
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Figure 17. Sample contours of the stream function, solute concentration and melt density for lo5 < Ra, < 4.6 x lo5: 
~ a ,  = - 5 x 105 
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approximation to the field variables. A similar limit point has been identified in simulations of 
thermosolutal convection in a real crystal growth f~ rnace . '~  

Radial segregation along the interface depends more on the magnitude of the thermal 
convection than on the development of cells by the interaction of the solute and temperature fields. 
This point is made in Figure 18, where the percentage segregation Ac is plotted as a function of Rat 
for three values of Ra,. The transition between solutal damping and vigorous thermal convection is 
evident for Ra, = - lo3. The calculations with Ra, = - 5 x lo5 terminated before a similar 
transition could be identified at this higher solute concentration. 

5.2. Destabilizing alloy: Ra, > 0 

Introducing a solute which lowers the density of the melt adjacent to the interface leads to 
solutally induced convection. McFadden et a l l 8  studied these flows for a perfectly vertical 
temperature gradient so that convection begins as a bifurcation from the one-dimensional motion, 
equation (21). They showed that the bifurcation is supercritical with respect to increasing Ra,, 
suggesting that two different flow structures exist for solutal Rayleigh numbers near the critical 
value. For crystal growth in a cylindrical ampoule these flows will differ by the direction of the 
circulation in the toroidal cell along the centreline of the ampoule. 

The radial temperature gradients inherent to the vertical Bridgman system destroy the 
symmetry of the one-dimensional state and result in non-uniform conv'ection for any value of Ra,. 
The interaction between the thermally induced flows caused by radial gradients is strongest for 
circulation upward along the ampoule wall. It is expected from simple symmetry arguments that 
these states compose the family of solutions continuous in Ra, in the vertical Bridgman geometry. 
The flows for Ra, = 0 that have circulation down along the ampoule must also still exist, at  least for 
small values of Ra,, but will be much more distorted by the thermally driven motions. These 
motions are not connected to the static state Ra, = 0 by a continuous transition in parameters. 

We have demonstrated the breaking of the families of solutally driven flows by the radial 
temperature gradients in calculations for the thermophysical properties of the silicon-germanium 
alloy, but with a destabilizing solute field, i.e. Ra, =- 0. For this system the onset of thermosolutal 
convection with Rat = 0 was calculated to occur at RaP"' 'v 165 by monitoring the sign of 
the determinant of the Jacobian matrix evaluated about the one-dimensional solution. Contours 
of the stream function, solute concentration and dimensionless melt density are shown in Figure 19 

0 1001 a I I I I I I 1 

L 
I I I I I I 

Thermal Rayleigh Number R a t  
I 10 1 x 1 0 2  1x103 1x104 1x105 1x106 1x107 

a " '  

Figure 18. Radial segregation Ac as a function of Ra, for three values of stabilizing solutal Rayleigh number Ra, 
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for Ra, = 156, for Ra, = 200 and 400. A weak toroidal cell is predicted near the junction of the 
adiabatic and hot zones for both values for Ra,. The density contours for this flow show the 
internal maximum and minimum characteristic of flows driven by the unstable axial solute 
gradient, but are distorted by the radial temperature gradients. The counterclockwise motion 
in the cell has been selected because of the radial temperature gradients. Increasing Ra, 
strengthened the circulation and concentrated the unstable solute gradient near the interface. 
Further increases in either Ra, or Ra, stretched the cell to the top of the ampoule. 

5.3. Effect of liquidus slope: onset of morphological instability 

Including the variation of the melting temperature with composition through the phase diagram 
resulted in larger deflections of the interface and in the possibility of morphological instability. ' 
We tested for this by calculations for m > O ,  with k = 4.2, Ra, = 0 and Ra, = lo3. For these 
conditions material with a higher solute concentration has a higher melting temperature than a 
more dilute mixture. Concentration fields are shown in Figure 20 with varying m. Including the 
variation of the melting temperature with concentration pulled the interface up into the melt at the 
centreline and down near the ampoule wall. These effects are the opposite of the influence of 
convective heat transport on the interface shape. The maximum interface height appears at the 
centreline for m = 0.3; however, the interface has developed aperiodic deflections with a spatial 
frequency similar to the mesh for m = 04. This qualitative change in interface shape was 
accompanied by achange in the sign of the determinant of the Jacobian matrix, which indicated the 
probable loss of temporal stability of the discrete equation set.6 

We believe that the oscillations in the interface are a numerical instability associated with the 
onset of morphological instability along the melt/solid interface, which cannot be adequately 
resolved by either our model for interface shape or by the finite element mesh. For the analysis of a 
planar interface, neglecting the correction to the melting temperature caused by interface curvature 
and the surface free energy results in the prediction of morphological instability for all spatial 
wavelengths, with the fastest growing wavelength being the smallest one. The smallest wavelength 
that can be resolved by the finite element analysis is set by the size of the elements along the 
interface. Using the critical wavelength (- 0.1 R )  appropriate for the mesh M2 and the linear 
analysis of Mullins and Sekerkalg for the onset of the instability along a two-dimensional interface 
yields a critical value of m = m, N 0.6. This result agrees reasonably well with the value of the 
liquidus slope for the onset of the oscillations in the finite element calculations. The theory of 
Mullins and Sekerka' predicts periodic spatial undulations along the interface. The aperiodic 
shape of the interfaces computed for m > 0.3 is due to the non-uniform concentration field which 
acts as an imperfection to the basic instability in the sense described by Chang and Brown.4 
Schaefer and Coriell" have observed the nonLuniform development of cells in a directional 
solidification experiment. 

6. DISCUSSION 

The biquadratic Petrov-Galerkin formulation increased the range of thermosolutal flows which 
could be computed in steady-state directional solidification problems when used in conjunction 
with mesh refinement and when the forms of the solidification boundary conditions were taken 
into account. No advantage of the Petrov-Galerkin (P2) formulation over conventional 
Galerkin's method was obvious from calculations using a coarse mesh. Although the Petrov- 
Galerkin solutions were always smooth, the solute concentration fields predicted were grossly 
inaccurate. The P2 formulation did give significant enhancement of the calculations with the more 
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refined mesh M2; globally accurate solute fields were computed for thermal Rayleigh numbers over 
an order-of-magnitude larger than with the Galerkin method. The increase in the range of thermal 
Rayleigh number is especially significant, since it allows computations in parameter ranges 
appropriate for real crystal growth systems.23 The method is easily implemented in an existing 
Galerkin finite element code. The change in the weighting function is simply incorporated into the 
residual equations and into the Newton iteration for solution of the algebraic equation set, thereby 
leading to an effective algorithm for studying flows, flow transitions and solute segregation in these 
systems. 

The study of the performance of the Petrov-Galerkin method on which these conclusions are 
based has exposed some of the issues that hinder its general application to a large class of problems. 
The extra portion of the weighting function vanishes on the boundaries of the element in the 
formulation used here, so that the Petrov-Galerkin formulation does not affect source terms along 
the boundary. We found that the overall species balance predicted with the Petrov-Galerkin 
formulation was in error when these source terms were not taken into account. Altering the form of 
the equation set to move these source terms into the interior of the domain removed this difficulty; 
this is the P2 formulation. Neither the streamline/upwinding method of Hughes and Brooks‘ for 
the bilinear elements nor the new biquadratic Petrov-Galerkin formulation of Donea et 
exhibits the loss of accuracy because of the mixed boundary condition, presumably because the 
weighting functions do not vanish at the boundaries; we elaborate on this point in another paper. 

The failure of the P2 method at high convection levels seems to result from under-resolution of 
the steep gradients associated with the concentration field adjacent to the interface and along the 
boundaries of the ampoule. Poor approximations to these gradients cause wiggles in the Galerkin 
formulation and global error in the Petrov-Galerkin results. Only adaptive mesh refinement seems 
a reasonable cure for this problem in calculations at higher Rayleigh number. The multicellular 
flows caused by the interactions of the temperature and solute fields result in internal layers and 
boundary layers in the concentration and temperature fields and point to the extreme complexity 
of the mesh necessary to capture this structure. 

The detection of the morphological instability associated with the coupling of the solute and 
temperature fields with the interface shape is only one example of the interesting instabilities that 
arise in systems with convection and solidification; see Reference 27 for others. The appearance of 
undulations along the melt/solid interface as a numerical instability demonstrates the difficulty 
associated with solution of a transport problem with extremely disparate length scales. 
Improvements are needed in the accuracy and efficiency of large-scale calculations before such 
problems can be solved effectively. 
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